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MASTER PROTOCOLS



* Multiple diseases, multiple patient subgroups
(biomarker-defined), and/or multiple therapies
studied under one, over-arching protocol

Master Protocols

 Also known as:

— Umbrella or platform trials: one disease, multiple
drugs

— Basket trials: one drug, multiple disease cohorts



Master Protocols

* Most examples to date in oncology/hematology

— Example umbrella trial
* NCI-MATCH

— Example basket trial:
e B225 trial of imatinib

* Recent interest in anti-bacterial drug development

— Example:

 ADAPT — multiple therapies; multiple body-sites of infection;
multiple pathogens



Master Protocols

Two avenues for innovation:

1. Establish a trial network with infrastructure in place to
streamline trial logistics, improve data quality, and facilitate
data sharing and new data collection

2. Develop a common protocol for the network that
incorporates innovative statistical approaches to study
design and data analysis



Master Protocols

Exploratory: Identify best treatment for biomarker-
defined patient subgroup

— Example: I-SPY Il

Confirmatory: Evaluate different therapies relative to
control for a single disease in parallel

— Example: Lung MAP (2" stage)
Capitalize on similarities among trials and shared
infrastructure to realize efficiencies

Needed:
— Regulatory buy-in
— Sponsors with drugs to test



Example 1: |-SPY Il
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Example 2: Lung MAP

Two-stage design in advanced Tx1
squamous NSCLC /
15t stage: analysis after 50 PFS C1
H ;
events for futility and potential for M1 Tx2
accelerated approval with ORR X
* Non-null hypothesis (H,: HR = / _
0.75) M2 C2
* Only clinically meaningful PFS _
effect goes forward Screen 1x3
If > 1 marker, patient assigned to M3 .
trial inversely with weight inversely C3
proportional to biomarker Tx4
prevalence M4 <
FDA approval during trial 2> C4
changes SOC - changes to design Non-Match —————  Tx5

and analysis applied to all trials in
the master protocol C5



FDA
Hypothetical Master Protocol in Oncology .

Common
Screen

Phase 3
Phase 2 (Exploratory) (Confirmatory)

N N

AT R N

Tx1 Tx2  Tx X2 C1l

Example: Tx8 activity assessed outside of the Phase 2
portion of the master protocol
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Infrastructure advantages
* Streamlined enrollment procedures

— Common screening platform to better match patients to trials for their
particular disease/biomarker profile

* Centralized governance structure
— Use of central IRBs, a standing DMC, single Steering Committee, etc.

* Established systems in place to improve trial processes
— Central randomization (e.g., via web portal)
— Central electronic data capture system

— In-network clinic personnel trained and experienced on existing
systems

e Common elements in case report forms (crfs)

- Study start-up time reduced
— Efficiencies realized during study conduct

—> Data quality improvements
11



Proposed trial network could encourage data sharing from
studies conducted within the network, where appropriate

Network could also facilitate new data collection

— To aid in non-inferiority margin determination

— As a source for prior information to support single study
submissions or Bayesian approaches

Chart data could provide perspective on past and current
practices and patients, thereby informing future study
designs

Other types of studies could be conducted to support
evidence from trials, e.g., case-control studies or
retrospective cohort studies

— Propensity score matching or other methods to control
confounding

Data Sharing
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FUA

Innovative Design Possibilities

Imbalanced randomization (e.g., 2:1, 3:1, or higher)
Use of external or historical control data

— In single-arm studies, or

— In conjunction with concurrent controls (with 2:1 or higher) to
increase power

Sharing of control groups across protocols — within a
specific pathway or marker subgroup

Model-based analysis methods for pooled analysis of
multiple disease or tumor types, markers, body-sites of
infection, etc.
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BAYESIAN METHODS FOR
PEDIATRIC TRIALS
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Bayesian Methods

Purpose is to borrow, information on adult patients for
use in pediatric trials
Two general approaches:

1. Bayesian hierarchical modeling

2. Adult data used as formal prior distributions in Bayesian
design trials

CDRH 2015 guidance describes (1)

Drug Information Association (DIA)/FDA Bayesian
statistics working group has developed a concept paper
describing (1) and (2) both as useful approaches for
pediatric trials
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Leveraging Existing Clinical
Data for Extrapolation to
Pediatric Uses of Medical Devices

Draft Guidance for Industry and
Food and Drug Administration
Stafft

DRAFT GUIDANCE

This guidance document is being distributed for comment purposes only.
Document issued on: May 6. 2015

% ou should submit comments and suggestions regarding this draft document within 90
dawys of publication in the Federal Register of the notice announcing the availability of
the draft guidance. Submit written comments to the Division of Dockets Management
(HFA-305). Food and Drug Administration. 5630 Fishers Lane, Room 1061, Fockwille,
MID 20852, Submit electronic comments to http:/www.regulations. gov. Identifsy all
comments with the docket number listed in the notice of availability that publishes in the
Federal Regisrer.

For gquestions regarding this document. contact Jacqueline Francis (CDRH) at (301) 796-
6405 (Jacqgueline.Francis{@fda.hhs.gov) or the Office of Communication. Outreach., and
Development (CBER) at 800-835-4709 or 240-402-7800.
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CDRH Pediatric Guidance

Full extrapolation — existing (e.g., adult) clinical data are
substituted for prospective clinical data on pediatric patients

— Other data sources provide supportive evidence
Partial extrapolation -- existing clinical data are combined via
a statistical model with pediatric clinical data sources

Statistical modeling requires availability of measured
variables to help connect adult outcomes to pediatric
outcomes

A typical hierarchical model might have two levels: a patient
level and a study level, with exchangeability evaluated at both
levels
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Figure 1. Pediatric Extrapolation Decision Tree

A, Does the treated discase or condition accur in
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a pediatric {sub)population(s)? Do Not Extrapolate
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of Adult - - e
D B. Is there an endpoint present in the existing data ne
ata souwrce that measures device effects relevant to the ‘_’___f-""
Intended pediatric [subjpopulation(s)# T
| yes
C.
1. 15 the device implanted or i contact with the body, and if 50, does either the location or duration of the
implantation differ between the adult and intended pediatric (subjpopulation]s) in such a way that either
the safety or effectiveness of the dewvice could be impacted in a clinically meaningful way? OR
2. Are there differences in device characteristics between pediatric and adult use that could impact either
Expected device safery or effectiveness in the pediatric (sub)lpopulations ina clinically meaningful way? OR

response to | device safety or effectiveness in the pediatric (sub)populations in a cinically meaningful way OR

-
Intervention
4. Are there differences in dissase characteristics between adult and pediatric [sub)population|s) that couwld
impact either device safety or effectiveness in the pediatric {sub)populations in a clinically meaningful way?
DR
5. Are there any other differences between adult and pediatric (subjpopulations that could impact either
device safety or effectiveness in the pediatric (sub)populations ina clinically meaningful way?
Degpite the differances andfor yes* L
uncertainties identified In box C, can * Are the adult data of sufficent
the extrapolated data be used in quality such that they can serve as
SOdMe Capacity to fairlky amd I PES a substitute for pediatnc data 1o
respansibly decide whether there is Candidiave Sar FUll EXIraposstion |4 demonstrate safety or
reasonable assurance of the safety effectiveness?

and effectiveness®*® of the dewice?
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Is the quiality of the i

adull data sufficient for
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* MNote that if all five gquestions in Box C are answered “no™, the direction from C is “no™. If at least one of
the five 1s answered “yes™ . the direction from C 15 “yes™.

**+*The agency relies upon only valid scientific evidence to determine whether there is reasonable assurance
that a device is safe and effective. Valid scientific evidence is evidence from well-controlled investigations,
partially controlled studies. studies and objective trials without matched controls, well-documented case
histonies conducted by qualified experis. and reports of significant hmman expenience with a marketed device,
from which 1t can fairly and responsibly be concluded by qualified experts that there 1s reasonable assurance
of the safety and effectiveness of a device under 1fts conditions of use. 21 CFE 860.7(c){1)&(2).”
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CDRH Pediatric Guidance

1192  Figure 2. Three-Level Hierarchical Model Structure Example: Studies Within
1193  Patient Populations Have Different But Related Effects

1194

1195 Patient Populations

1196 / \

1197 Level 3- Adults Pediatrics

1198 / \ / \
1199 Level2:  study 1 Study2  Study3 New Study
1200 | [ |

1201 Level 1: Y1s---2¥n YiseesVn2 Y1,..0.¥n3 Ynew
1202

1203 Level 1: Patients (y) exchangeable within studies

1204 Level 2: Studies exchangeable within patient populations

Level 3: Patient populations are exchangeable

19



Use of Adult Data as Priors

Guillain-Barré syndrome (GBS) — similar in children and adults, but
children recover faster

Treatment options: plasma exchange and IV immune globulin (IVig)

2 trials in adults comparing IVIg to plasmapheresis showed little
difference between treatments in median time to ambulation (n = 388
total)

Trials in children small and of poor quality, e.g., case series compared
to unmatched historical controls

Can adult data be leveraged to keep pediatric trial of feasible size?

— 200-600 ped GBS cases per year = ~100-300 potentially eligible for a
trial
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CLINICAL

TRIALS

A Bayesian approach to randomized controlled
trials in children utilizing information from adults:

CASE STUDY Clinical Trials 2005; 2: 305-310

the case of Guillain-Barré syndrome

Steven N Goodman® and John T Sladky”

Background Guillain-Barré syndrome (GBS) is a rare neurologic disease that occurs at
all ages, causing a progressive, ascending paralysis that usually resolves over weeks or
months. The disease appears to be identical in children and adults, except that
children recover more quickly, with fewer residua. For patients who lose the ability to
walk independently, the main treatment options are plasmapheresis or intravenous
immune globulin (IVig), treatments that have shown to have identical effectiveness
in adults in two large RCTs involving 388 patients. The effectiveness of the treatments
in children has only been studied in small, poorly controlled studies. If one could
capture all eligible patients in the United States, only about 100-300 children would
be available for a trial annually.

Methods The goal of this case was to demonstrate how Bayesian methods could be
used to incorporate prior information on treatment efficacy from adults to design a
randomized noninferiority trial of IVIg versus plasmapheresis in children. A Bayesian
normal-normal model on the hazard ratio of time to independent walking was
implemented.

Results An evidence-based prior was constructed that was equivalent to 72 children
showing exact equivalence between the therapies. A design was constructed based
on a Bayesian normal-normal model on the hazard ratio, yielding a sample size of
160 children, with a preposterior analysis demonstrating a “Type |I" error rate of 5%
and a power of 77%.

Conclusions This case study illustrates a rational approach to constructing an
evidence-based prior that would allow information from adults to formally augment
data from children to minimize unnecessary pediatric experimentation. The
frequentist properties of a Bayesian design can be evaluated and reported as they
would be for a standard design. Discussion of the appropriate prior for such designs
is both a necessary and desirable feature of Bayesian trials. Clinical Trials 2005; 2:
305-310. www.SCTjournal.com

2004 FDA Workshop:
Bayesian Methods

Special issue of
Clinical Trials
Published from talks
(2005)
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Figure 2 Evidence from adults and prior probability curve
used for children on the hazard ratio of WVig versus
plasmapheresis for the endpoint of time to independent
ambulation.

Example of the use of adult
data to form a prior
distribution for peds
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Use of prior corresponded to roughly 72 pediatric patients studied
Sample size of actual study, designed with monitoring after every 40
patients, up to a maximum of 160

— Expected n =104 if IVIg inferior to plasmapheresis

— Expected n = 156 if IVIg non-inferior

For comparison, frequentist analysis ignoring prior information from
adult data requires 450 or greater

For above, 7 days to ambulation considered the non-inferiority margin
(“HR = 1.3)

Caution—Bayesian approach requires that biological processes in
disease and treatment support extrapolation from one population to
the other

GBS Example
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CLINICAL
e PANEL DISCUSSION
TRIALS

Clinical Trials 2005; 2: 311-318

Using prior distributions to synthesize historical
evidence: comments on the Goodman-Sladky
case study of IVig in Guillain-Barré syndrome

Joel B Greenhouse” and Howard Seltman®

One feature of the Bayesian approach is that it provides methods for synthesizing
what is known about a question of interest and provides a formalism based an the
laws of probability for incorporating this auxiliary knowledge into the planning and
the analysis of the next study. In this comment, we use elements of the Goodman-
Sladky case study to illustrate (1) the use of Bayesian methods to quantify historical
information about an intervention through the specification of a prior distribution,
{2) an approach to the analysis of the sensitivity of the conclusions of a Bayesian
analysis to the specification of the prior distribution, and (3) we comment on the rale
of research synthesis for combining information about an intervention from different
data sources as a tool to help summarize evidence about the intervention. Clinical
Trials 2005; 2: 311-318. www.5CTjournal.com

Introduction

Every randomized controlled clinical trial (RCT)
takes place in the context of uncertain evidence
about the efficacy of the intervention of interest.
The goal of an RCT, therefore, is to bring differing
opinions concerning the intervention to consensus.
Yet paradoxically, analytic methods used to evaluate
evidence from a trial typically do not incorporate
previous results and knowledge, even though
the scientific method is predicated on learning
from the accumulation of evidence. Nevertheless,

inform the design of a study of the same interven-
tions in children with GBS, In these comments, we
would like to use elements of this case study to
illustrate 1) the use of Bayeslan methods to quantify
historical information about an intervention
through the specification of a prior distribution, 2)
an approach to the analysis of the sensitivity of the
conclusions of a Bayesian analysis to the specifica-
tion of the prior distribution, and 3) to comment on
the role of research synthesis for combining
information about an intervention from different
data sources as a tool to help summarize evidence

Companion article:
How to choose

a prior and how to
conduct sensitivity
analysis on the
choice
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Summary

Pediatric and rare disease trials are increasingly challenging

Trial networks with established infrastructure and use of a
common protocol can address some of these challenges
— Optimize trial design and conduct to realize efficiencies and

improve data quality through centralization of processes,
systems, and training

Innovative trial designs could be considered, given the
network infrastructure and resources available to
implement such designs

— In pediatric trials, methods of borrowing information from adult

clinical trials, when available and under appropriate conditions,
can be leveraged to improve pediatric trials

Overall objective is to reduce time and cost of developing
promising drugs for children
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BACK-UP SLIDES
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Imbalanced Randomization

* Alternative to single-arm studies in settings with significant
recruitment challenges

* Design includes an active control arm with highly imbalanced
randomization (e.g., 2:1, 3:1, or higher)
* Leverage external control data via frequentist or Bayesian
methods during analysis to increase power
* Consider interim assessment of similarity between concurrent
control patients and external control patients*
— If highly similar, randomization could cease
— If highly dissimilar, could revert to 1:1 randomization

External data can be up- or down-weighted in analysis, with
use of Bayesian methods*

*Viele K, Berry S, Neuenschwander B, et al. Use of historical control data for assessing treatment effects in clinical trials (2013)
Pharm. Stat.
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Shared Control Subjects

e Use of common protocol with standard procedures, visit schedules,
and CRFs may allow control patients to be shared across trials

e Example:

— Drug A’s trial is actively recruiting with 1:1 randomization allocation of
Drug A vs. standard of care (SoC)
— Drug B’s trial is approved to begin recruitment in same study population
* Randomization of eligible patients changes at this point to 1:1:1 corresponding to
Drug A: Drug B: SoC
— If enrollment is completed for Drug A’s trial, while Drug B’s trial is still
ongoing, then
* Randomization allocation reverts to 1:1 for Drug B: SoC

e Control patients in Drug A’s trial have their data unmasked for analysis of the Drug
A protocol but remain masked in Drug B’s trial
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Shared Control Subjects

Essential to this process is a CRO/Coordinating Center
able to establish appropriate firewall procedures to
maintain masking of patients among the various trials

Sharing control patients does not imply that comparisons
among active drugs are carried out

Trial close-out for one protocol while the other is
ongoing, and some control patients are shared, will
impact operations at the clinics

Assuming logistical considerations can be addressed, the
benefit to sharing control patients could be substantial in
terms of both recruitment time and trial costs
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-
Multiple Disease Types

* For cases where disease or tumor types correspond to rare
diseases, and studying each type is not feasible due to low
prevalence

* Mode-based approaches that account for heterogeneity
across types may be useful
e Bayesian hierarchical modeling is one such approach*
— Assume subgroups are exchangeable in the hierarchical model
— Covariate adjustment may be needed for exchangeability

— Test for overall treatment effect (does the drug work?)
supplemented by subgroup-specific estimates of treatment
effects that are ‘smoothed’ under the model

— Clustering can separate disease types with positive results
versus those with less favorable results

*See, e.g., Berry SM, Broglio KR, Groshen S, and Berry DA. Bayesian hierarchical modeling of patient subpopulations: Effiecient designs of
Phase Il oncology clinical trials (2013). Clinical Trials.
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